Mu-delta opioid receptor functional interaction: Insight using receptor-G protein fusions.

نویسندگان

  • Laelie A Snook
  • Graeme Milligan
  • Brigitte L Kieffer
  • Dominique Massotte
چکیده

Fusion proteins between a receptor and a pertussis toxin-insensitive G(i)alpha subunit were used to gain insight into the molecular interactions that take place upon mu and delta opioid receptor heterodimerization. When mu opioid receptor-G(i1)alpha fusions were coexpressed with nonfused delta opioid receptors in human embryonic kidney 293 cells, or vice versa, receptor heterodimers were detected by coimmunoprecipitation. In pertussis toxin-treated cells, receptor coexpression decreased the amount of guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) incorporated in the fused G alpha protein after the addition of agonists specific for the receptor-G(i1)alpha fusion. In addition, activation of the G alpha protein occurred in heterodimers upon addition of an agonist specific for the nonfused receptor. It remained unaffected by an inverse agonist specific for the receptor-G(i1)alpha fusion. These data suggest that signaling through the receptor-G(i1)alpha fusion protein is impaired in heterodimers and support a mechanism in which activation of the G alpha subunit is promoted by a direct interaction with the nonfused receptor. Alternatively, receptor coexpression did not modify the ligand binding properties for the high-affinity state of the receptor-G(i1)alpha fusion nor the EC50 values for agonist-induced [35S]GTPgammaS incorporation in the G(i1)alpha subunit. In addition, no binding competition was observed between delta and mu ligands. Together, the data point to mu-delta opioid receptor heterodimers formed by contact interactions between monomers that retain their structural integrity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular docking study of Papaver alkaloids to some alkaloid receptors

Background and objectives: More than 40 different alkaloids have been obtained from opium the most important of which are morphine, codeine, papaverine, noscapine and tabaine. Opioid alkaloids produce analgesia by affecting areas of the brain that have peptides with pharmacological pseudo-opioid properties. These alkaloids show important effects on some intracellular peptides l...

متن کامل

In vivo neuronal co-expression of mu and delta opioid receptors uncovers new therapeutic perspectives.

Opioid receptors belong to the G protein coupled receptor family. They modulate brain function at all levels of neural integration and therefore impact on autonomous, sensory, emotional and cognitive processing. In vivo functional interaction between mu and delta opioid receptors are known to take place though it is still debated whether interactions occur at circuitry, cellular or molecular le...

متن کامل

Expression of the third intracellular loop of the delta-opioid receptor inhibits signaling by opioid receptors and other G protein-coupled receptors.

To explore the feasibility of developing inhibitors of signaling by opioid receptors and other G protein-coupled receptors (GPCRs) that use the same G protein pool, we investigated the capacity of a minigene encoding the third intracellular loop of the delta-opioid receptor (delta-i3L) to act as competitive antagonist of the receptor-G protein interface interaction. In delta-i3L-expressing cell...

متن کامل

Immunoprecipitation of opioid receptor-Go-protein complexes using specific GTP-binding-protein antisera.

Solubilization of opioid receptors from rat cortical membranes that retained high-affinity guanine nucleotide-sensitive agonist binding was achieved using 10 mM CHAPS. We report the nature of the interactions of mu and delta opioid receptors with the guanine nucleotide-binding protein G(o) by immunoprecipitation of CHAPS extracts with selective G(o)alpha-subunit protein antisera. Antiserum IM1 ...

متن کامل

Mu and Delta opioid receptors activate the same G proteins in human neuroblastoma SH-SY5Y cells.

1. There is evidence for interactions between mu and delta opioid systems both in vitro and in vivo. This work examines the hypothesis that interaction between these two receptors can occur intracellularly at the level of G protein in human neuroblastoma SH-SY5Y cells. 2. The [(35)S]GTP gamma S binding assay was used to measure G protein activation following agonist occupation of opioid recepto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 318 2  شماره 

صفحات  -

تاریخ انتشار 2006